处理污水量按需求定
可售卖地全国
类型废水处理设备
加工定制是
材质防腐碳钢
防腐工艺环氧沥青
电源380v
功率20-40kw
处理量5-1000吨
进水口50mm
出水口110mm
定制加工是
材料碳钢
材料厚度6mm
处理类型屠宰废水
排放标准一级A
规格定制
是否定制是
进出水口50
处理水量5-1000吨/每天
进水管径DN50mm
出水管径DN1100
生产周期3-5天
有害废水处理
铅(Pb)是一种有毒的重金属元素,在环境中难降解,可被水生动植物富集吸收,进人食物链可能危害人畜安全。另外,直接饮用或皮肤接触含Pb水体均能使其进人人体,对人体健康造成危害。Pb中毒能导致人体出现、幻觉、、焦虑、肌无力等,且能损伤人的中枢系统,对肾、肝、生殖系统以及大脑都有严重危害。因此寻找一种、环保的方法处理含Pb废水,使其达标排放,减少环境污染,是急需研究和解决的环境问题。
吸附法是目前重金属废水处理的主要方法之一,其具有、简便和选择性好等优点。当前常用的吸附剂有树脂、壳聚糖、硅藻土、膨润土、活性炭等。利用农业废弃物制备的生物炭处理含重金属废水,是近年来吸附法的研究热点。
生物炭表面富含梭基、酚经基、碳基、酉昆基等多种官能团,有大量的孔隙结构,是一种的吸附剂。据统计,我国每年产生的农业废弃物达数千万t,这些农业废弃物是很好的廉价易得的生物炭原料。生物炭在水溶液中对As(V).Pb(II)和Cd(II)有巨大的吸附能力。当前一些报道应用稻壳、水稻秸秆、玉米秸秆等制备的生物炭对水体中重金属的吸附效果和特性进行研究,结果表明,生物炭表面具有较多的吸附位点,对水体中Pb2+,Cd2+等重金属的吸附效果较好。将生物炭进行改性或表面修饰能显著提高其吸附效果。
近年来,将吸附剂用磁性铁氧化物纳米粒子进行表面修饰,不仅能快速、地吸附去除废水的重金属离子,而且由于其特的磁学性质还可方便地外加磁铁进行回收,有很好的可重复再利用性,表现出良好的应用前景。CONC等将果胶吸附剂用磁性铁氧化物纳米粒子进行表面修饰,吸附Cu2+后再用EDTA对其进行再生,第5次再生后,仍可达到原始吸附容量的58.66%,再生利用性良好。许飘利用磁性纳米固定化黄抱原毛平革菌吸附重金属污染废水中的Pb2+,吸附量高达185.25mg/g,且经过吸附一解吸循环后仍能达到很好的去除效果。
目前,国内对生物炭表面负载磁性材料研究尚处于初期阶段,很有必要将吸附条件进行优化,确定吸附模型,探索其吸附机理。因此,本研究将谷壳生物炭改性后负载Fe3O4,制备成具有磁性的生物炭,通过对其进行表征分析及模拟废水中Pb2+的吸附效果研究,为磁性生物炭作为一种新型的吸附材料运用于实际工程打下坚实的理论基础。
工业废水的成本较高
由于我国当前关于工业污水处理技术的限制,许多企业在这一方面都存在投资成本较高的现状。为了符合工业废水的排放标准,需要在其处理上投放较大的人力及投入资金。但是当前的处理工艺都缺乏一定的针对性,工作效率偏低,其处理成效受到一定的限制。可对于工业废水的处理确实存在一定的必要性,但实际情况是其投入远高于收入,使许多企业对其逐渐丧失工业废水处理的动力。
工业废水处理问题的解决对策
首先应由地区的环保部门对工业废水污染防治加强重视度,以实际情况对其管理的制度进行完善。并做好生产把关与项目申报的工作,并且应该遵守项目建设三个同时的制度,尤其是对于新建的项目,重点关注废水处理系统验收环节,使废水处理体系的完整度得以**。
严格把控相应企业项目工作,对于不同及不符合标准的项目进行严格的审批。另外,对于废水处理管理的精细化,同时对于废水污染严重的企业进行重点的,并不定期对于废水排放工作进行检测,使废水污染控制在正常的范围内。对于违规的企业要进行严格的查处,对相应项目负责人进行严格的查处,避免发生类似的问题发生。若有关企业废水排放的污染情况较为严重,应立即进行停业整顿。依法对排污的企业责令停产处理,在达到标准后,恢复企业正常的运营。
贵州鑫沣源环保是一家集进水处理、膜分离、环保工程为一体的公司,多年来致力于提供水处理技术、水处理设备的行业解决方案,以及纯水、超纯水、软化水、废水处理、中水回用、纯净水、泳池循环水、废气处理、噪音处理等工程总包及维护服务。主要设备分类:纯水设备,超纯水设备,纯化水设备,工业纯水设备,软化水设备,EDI纯水设备,RO纯水设备。
医院污水处理二氧化氯消毒装置,包括污水池,所述污水池上设置有管道,管道的末端设置有射流器,射流器连接到二氧化氯发生器上,所述二氧化氯发生器的下端设置有两个原料槽,分别为亚原料槽和原料槽,两个原料槽均采用原料管与二氧化氯发生器内部的反应罐连接;所述二氧化氯发生器与外设的控制柜控制连接,所述原料槽与二氧化氯发生器之间设置有稀释槽。本实用新型将污水池污水直接与二氧化氯发生器连接,并且对进行稀释后进行反应;并且内部设置三个反应罐,减少一个反应罐造成的原料反应不完整,加大原料利用率;污水消毒净化过程全由控制柜控制,人为,效率高,安全系数高。
医院污水处理二氧化氯消毒装置,包括污水池,其特征在于:所述污水池上设置有管道,管道的末端设置有射流器,射流器连接到二氧化氯发生器上,所述二氧化氯发生器的下端设置有两个原料槽,分别为亚原料槽和原料槽,两个原料槽均采用原料管与二氧化氯发生器内部的反应罐连接;所述二氧化氯发生器与外设的控制柜控制连接,所述二氧化氯发生器内部反应罐有三组,分别为反应罐,第二反应罐以及第三反应罐,所述原料槽与二氧化氯发生器之间设置有稀释槽,所述控制柜与射流器电连接;所述二氧化氯发生器上设置出水管。
所述的一种医院污水处理二氧化氯消毒装置,其特征在于:所述原料槽与二氧化氯发生器的反应罐采用计量泵连接。
医院污水处理二氧化氯消毒装置,其特征在于:三组反应罐均为圆柱型的筒状结构,并且三组反应罐截面大小相同;三组反应罐在二氧化氯发生器中罐口的高度相同;第二反应罐的高度比反应罐高20-2,第三反应罐的高度比第二反应罐高20-2;所述反应罐与原料槽的进料管道连接,所述反应罐与第二反应罐之间以及第二反应罐与第三反应罐之间采用导流管贯通,导流管连接在反应罐的侧壁上,导流管与三个反应罐的连接位置刚好位于反应罐侧壁沿高度方向上的中心点。
医院污水 处理二氧化氯消毒装置,其特征在于:所述稀释槽包括原料的进液管,以及入水管;进液管以及入水管上均设置计量泵。
一体化废水处理溶气气浮装置
废水治理作为一个老大难问题,一直困扰着各个企业,尤其是一些中小型企业,如造纸、印刷、食品、石油化工等,由于资金和技术等方面的制约,进口设备投资太大,中小型企业难以承受,即便投巨资购买的处理设备,往往也因为巨额的运行费用而不得开开停停,以应付环保部门的检查,针对目前这种现状,我公司参考国外技术,研制开发了一体化废水处理溶气气浮技术与成套设备,其处理效果远远高于目前传统常规气浮。
一体化废水处理溶气气浮设备技术关键与特点
1、处理效率高:
气浮处理效率的高低,取决于单位体积溶气水所能浮起的浮粒子的大绝干重量,我们将其定义为单位浮量,这是度量溶气水质好坏的一项客观指标。空气属于难溶于水的物质,常压下空气在水中的溶解度约为1.8%,在0.3%Mpa的压力下,溶解度可达到5.4%,如何让这些有限的溶解空气充分发挥作用,是气浮技术的关键。而缩小气泡的直径、气泡群密度、改良气泡群均匀度,是提高气浮效率的关键,三者互相关联、相互制约。1个100UM的气泡如果变成等体积的1UM的气泡,其微量可以达到1000000个,所以,在溶解空气总量一定的前提下,缩小单个气泡的直径,即可气泡群密度,同时气泡群的均匀性也可以得到改善,传统气浮效率低,其重要的原因就是因为所产生的气泡直径过大,主体气泡群气泡的直径一般50UM以上,气泡群的密度(消能后单位体积溶气水中所含气泡个数)一般在108\M3以下,气泡群均匀性(主体气泡群数量占总气泡数量的比例)差,直径大于100UM的气泡占85%以上,这些气泡都属于无效浮选气泡,而且由于气泡直径过大导至气泡上升速度过快,致使絮凝体遭到冲击面破裂,浮选效果降低。而本机所产生的微气泡直径在1UM左右,密度高于102\CM3同时气泡大小均匀,这就保证了较高的处理效率和理想的处理效果。
2、溶气利用率高
本机的溶气利用率近,传统的凹式浮只有10%左右,而早期的气浮仅为6%左右,气浮效率的高低,同溶气效率没有太大的关系,终取决于溶气利用率的高低,同溶气效率没有太大的关系,终取决于溶气利用率的高低。以溶气压力为例,从0.3Mpa提高到0.5Mpa,其溶气效率多也只能提高一倍,但能耗却高出好几倍,以溶气效果为例,若从50%的溶气效率提高到,其气浮效率多也只能提高一倍,但相应的溶气设备在构造上就要复杂的多,检修也相应复杂。
研究表明,只有比漂浮粒子(絮凝前有单个粒子)直径小的气泡,才能与该悬浮粒子发生有效的吸附作用,在自然水体中,短时间内难以沉淀的悬浮粒子,其直径大多在10-30UM,50UM以上的固态悬浮粒子经过几个小时的静置,可以自然下沉或浮出水面,乳化液粒子径在0.25-2.5UM之间,其中少量大颗粒直径约10UM左右,所以1UM左右微气泡对绝大多数粒子都有很好的吸附作用,这也是本机溶气利用率高的直接原因。
3、处理负荷高
本机可以处理悬浮物(SS)含量高达5000-20000mg/L的废水,这个指标是任何传统气浮所不能达到的。传统常规气浮所能分离在(SS)含量一般在1000mg/L左右,仅对SS含量在几百mg\L左右的废水具有一定的实用价值。
4、简便实用的压力溶气
本机溶气罐的设计采用了与传统理论不同的设计依据,否定了以水力停留时间为主要依据的设计方法,实现了小容积大处理量,为气水接触面积采用了预混合机构,气、水在极短的时间内即可达到均相状态。
5、率的气泡发生器
传统气浮由于期释放器本身的缺陷和局限性,也对浮选效果产生了致命的影响:如窝凹气浮采用的是利用高速旋转的叶轮将吸入的空气打碎而产生气泡,且不论高速旋转的叶轮会同时将絮体搅碎,破坏悬浮物,仅是这种产生气泡的方式,就决定了这种结构无法产生10微米以下的微气泡,因为要通过机械剪切产生微气泡,首先要克服的是气泡的表面张力,气泡越小,其表面张力就越大,要消耗的能量就越高,目前获得的气泡直径小的方法是电解,其次就是压力溶气,本机所采用的气泡发生器,以其合理的设计,实现了空气从溶气水到微气泡的的转化,具有以下优势:
(1)可以大限度的消除溶气水的能量,也就是说,可以大限度的使溶气从溶解平衡的高能值降到几乎接近常压力的低能值。溶气水的消能是能量的转移,而不是能量的消失。大消能,是指获得物理性能优良的微气泡的前提下,能量转换的高值。本机所采用的气泡发生器的消能比可达99.9%,而普通气泡发生器高只能达到95%。
(2)在获得大消能比的前提下,具有快的能量消减速度,也就是说具有短的能量消减时间,即可以在短的能量消减时间内获得大能量消减比。本案所采用的气泡发生器的消能时间仅为0.01-0.03秒,而普通气泡发生器快也得0.3秒。
(3)溶气水从高能值降到低能值的过程中没有涡流反冲之类的流态产生。众所周知,微气泡自形成以后,就伴随着一系列的气泡合并作用,合并作用是由表面能的自发减少所决定的,两个体积相同的气泡合并后,其表面能减少20.63%。若在释放器中存在有利于气泡合并的结构的话,那通过该装置获得理想的微气泡是不可能的。只能杜绝溶气的涡流,反冲,才能从根本上避免微气泡的合并。
http://www.gzxfyhjkj.com